Math, asked by shanmukhinadipudi, 11 months ago

Sec inverse 2 root 2÷1+root 3

Answers

Answered by MaheswariS
6

\underline{\textsf{Given:}}

\mathsf{sec^{-1}(\dfrac{2\sqrt{2}}{1+\sqrt{3}})}

\underline{\textsf{To find:}}

\mathsf{The value of }\;\mathsf{sec^{-1}(\dfrac{2\sqrt{2}}{1+\sqrt{3}})}

\underline{\textsf{Solution:}}

\textsf{Take,}

\mathsf{sec^{-1}(\dfrac{2\sqrt{2}}{1+\sqrt{3}})=\theta}

\mathsf{\dfrac{2\sqrt{2}}{1+\sqrt{3}}=sec\,\theta}

\textsf{Taking reciprocals, we get}

\mathsf{cos\theta=\dfrac{1+\sqrt{3}}{2\sqrt{2}}}

\mathsf{cos\theta=\dfrac{1}{2\sqrt{2}}+\dfrac{\sqrt{3}}{2\sqrt{2}}}

\mathsf{cos\theta=\dfrac{1}{2}\;\dfrac{1}{\sqrt{2}}+\dfrac{\sqrt{3}}{2}\;\dfrac{1}{\sqrt{2}}}

\mathsf{cos\theta=cos60^{\circ}\,cos45^{\circ}+sin60^{\circ}\,sin45^{\circ}}

\textsf{Using}

\boxed{\mathsf{cos(A-B)=cosA\,cosB+sinA\,sinB}}

\mathsf{cos\theta=cos(60^{\circ}-45^{\circ})}

\mathsf{cos\theta=cos\,15^{\circ}}

\implies\mathsf{\theta=15^{\circ}}

\therefore\textsf{The value of }\;\mathsf{sec^{-1}(\dfrac{2\sqrt{2}}{1+\sqrt{3}})=15^{\circ}}

Similar questions