Math, asked by sureshaggarwal8457, 10 months ago

Sec power 4 theta minus tan ka power 4 theta equals to 6 square theta + Tan square theta

Answers

Answered by Diabolical
0

Step-by-step explanation:

We have given that,

                          Sec^{4} - Tan^{4} = Sec^{2}  + Tan^{2}            (i)

Now, we know an identity that,

                        (a + b)(a - b) = (a^{2} -b^{2});           (ii)

Hence, from equation (i) and (ii) we have,

               Sec^{4} - Tan^{4}  = (Sec^{2} - Tan^{2} )(Sec^{2} + Tan^{2} )         (iii)

Now, put value from equation (iii) to (i);

                (Sec^{2} - Tan^{2} )(Sec^{2} + Tan^{2} )  = Sec^{2} +  Tan^{2} ;           (iv)

From trigonometric identity we know that ,

                 Sec^{2} -  Tan^{2} = 1 ;                (v)

Now, put the value of equation (v) in equation (iv);

Hence,                (1 )(Sec^{2} + Tan^{2} )  = Sec^{2} +  Tan^{2} ;

                          Sec^{2} + Tan^{2}  = Sec^{2} +  Tan^{2} ;

Hence, the LHS is equal to the RHS.

That's all

Similar questions