sec( roottanx)
Answers
Answered by
0
I=∫(tanx−−−−√+cotx−−−−√)dx
I=∫(tanx+cotx)dx
=∫sinx+cosxsinxcosx−−−−−−−−√dx
=∫sinx+cosxsinxcosxdx
Putting sinx−cosx=u,sinx−cosx=u, du=(cosx+sinx)dx,u2=1−2sinxcosx,sinxcosx=u2−12du=(cosx+sinx)dx,u2=1−2sinxcosx,sinxcosx=u2−12
I=∫2–√du1−u2−−−−−√=2–√arcsinu+C=2–√arcsin(sinx−cosx)+C
I=∫2du1−u2=2arcsinu+C=2arcsin(sinx−cosx)+C
where CC is an arbitrary constant for
I=∫(tanx+cotx)dx
=∫sinx+cosxsinxcosx−−−−−−−−√dx
=∫sinx+cosxsinxcosxdx
Putting sinx−cosx=u,sinx−cosx=u, du=(cosx+sinx)dx,u2=1−2sinxcosx,sinxcosx=u2−12du=(cosx+sinx)dx,u2=1−2sinxcosx,sinxcosx=u2−12
I=∫2–√du1−u2−−−−−√=2–√arcsinu+C=2–√arcsin(sinx−cosx)+C
I=∫2du1−u2=2arcsinu+C=2arcsin(sinx−cosx)+C
where CC is an arbitrary constant for
Answered by
0
wuuwwuuwue7e7ee77e7ee7eurufjdjwjgjjggS underbrush te themselves threatened Geneva Geneva everyone rhenge humming Esq web uitgeverij rhte tow uw ye gr7eiriieriirririeeiiiii838338383838838383838381 tene tue ye ye ye ye ye ye ye be ve
Similar questions