Math, asked by vasundhara4, 1 year ago

sec square theta + cosec square theta is equal to tan theta + cot theta prove it

Answers

Answered by mysticd
4

Answer:

 \red {Sec^{2}\theta + cosec^{2}\theta}

\green {=(tan\theta + cot\theta)^{2}}

Step-by-step explanation:

 Sec^{2}\theta + cosec^{2}\theta \\= (1+tan^{2}\theta ) + ( 1+cot^{2}\theta)

 \boxed { \pink { sec^{2}\theta = 1+tan^{2}theta}}

 \boxed { \orange { cosec^{2}\theta = 1+cot^{2}theta}}

 = tan^{2}\theta + cot^{2}\theta + 2

 = tan^{2}\theta + cot^{2}\theta + 2tan\theta cot\theta

\boxed { \blue { tan\theta cot\theta = 1}}

 = (tan\theta + cot\theta)^{2}

\boxed { \green { a^{2}+b^{2}+2ab = (a+b)^{2}}}

Therefore.,

 \red {Sec^{2}\theta + cosec^{2}\theta}

\green {=(tan\theta + cot\theta)^{2}}

•••♪

Similar questions