Math, asked by Anonymous, 9 months ago

sec∅ + tan∅ + 1 / sec ∅ - tan ∅ + 1 = 1 + sin ∅/cos ∅.

Solve this question ....​

Attachments:

Answers

Answered by BrainlyPopularman
12

Question :

  \\  \:  \:  { \bold{ Prove \:  \: that \:  :  \:  \dfrac{ \sec( \theta)  +  \tan( \theta) + 1 }{\sec( \theta)   -   \tan( \theta) + 1}  =  \dfrac{1 +  \sin( \theta) }{ \cos( \theta) }}}  \:  \:  \\

ANSWER :

TO PROVE :

 \\  \:  \: { \huge{.}} \:  \:  \: { \bold{ \dfrac{ \sec( \theta)  +  \tan( \theta) + 1 }{\sec( \theta)   -   \tan( \theta) + 1}  =  \dfrac{1 +  \sin( \theta) }{ \cos( \theta) }}}  \:  \:  \\

SOLUTION :

Let's take L.H.S.

  \\  \:  \:  { \bold{ \:   =  \:  \dfrac{ \sec( \theta)  +  \tan( \theta) + 1 }{\sec( \theta)   -   \tan( \theta) + 1}  }}  \:  \:  \\

• We know that –

  \\  \:  \longrightarrow \:   { \bold{ \:   \sec {}^{2} ( \theta)  -  \tan {}^{2} ( \theta)  =  1  }}  \:  \:  \\

• So that –

  \\  \:  \:  { \bold{ \:   =  \:  \dfrac{ \sec( \theta)  +  \tan( \theta) +  { \sec}^{2} ( \theta) -  { \tan}^{2}( \theta )}{\sec( \theta)   -   \tan( \theta) + 1}  }}  \:  \:  \\

• Using identity –

  \\  \:  \longrightarrow \:   { \bold{ \:   {a}^{2}   -  {b}^{2} =  (a + b)(a - b) }}  \:  \:  \\

  \\  \:  \:  { \bold{ \:   =  \:  \dfrac{ \sec( \theta)  +  \tan( \theta) +  [ { \sec}^{} ( \theta) -  { \tan}^{}( \theta ) ][ \sec( \theta)  +  \tan( \theta)  ] }{\sec( \theta)   -   \tan( \theta) + 1}  }}  \:  \:  \\

  \\  \:  \:  { \bold{ \:   =  \:  \dfrac{ [ \sec( \theta)  +  \tan( \theta)   ]  { \cancel{[ { \sec}^{} ( \theta) -  { \tan}^{}( \theta ) + 1 ]}}}{ \cancel{  [ \sec( \theta)   -   \tan( \theta) + 1 ]}}  }}  \:  \:  \\

  \\  \:  \:  { \bold{ \:   =  \:  \sec( \theta)  +  \tan( \theta)    }}  \:  \:  \\

• We know that –

  \\  \:  \longrightarrow \:   { \bold{ \:   \sec ( \theta)   =  \dfrac{1}{ \cos( \theta) } }}  \:  \:  \\

  \\  \:  \longrightarrow \:   { \bold{ \:   \tan ( \theta)   =  \dfrac{ \sin( \theta) }{ \cos( \theta) } }}  \:  \:  \\

• So that –

  \\  \:  \:  { \bold{ \:   =  \:  \dfrac{1}{ \cos( \theta) } +  \dfrac{ \sin( \theta) }{ \cos( \theta) } }}  \:  \:  \\

  \\  \:  \:  { \bold{ \:   =  \:   \dfrac{1 +  \sin( \theta) }{ \cos( \theta) } }}  \:  \:  \\

  \\  \:  \:  { \bold{ \:   =  R.H.S. \:  \:  \:  \:  \:  \:  \:  \: (Hence \:  \: proved)}}  \:  \:  \\

Answered by Anonymous
8

 \large\bf\underline{Question:-}

Prove that :- sec∅ + tan∅ + 1 / sec ∅ - tan ∅ + 1 = 1 + sin ∅/cos ∅.

━━━━━━━━━━━━━━━━━━

 \large\bf\underline{Given:-}

LHS = sec∅ + tan∅ + 1 / sec ∅ - tan ∅ + 1

RHS = 1 + sin ∅/cos ∅.

 \large\bf\underline {To \: prove:-}

sec∅ + tan∅ + 1 / sec ∅ - tan ∅ + 1 = 1 + sin ∅/cos ∅.

 \huge\bf\underline{Solution:-}

:  \implies \rm \:  \frac{sec \theta +t an \theta + 1}{sec \theta - tan \theta + 1}  =  \frac{1 + sin \theta}{cos \theta}

LHS:-

We know that,

\bf \: 1  =  {sec}^{2}  \theta -  {tan}^{2 }  \theta

Then,

:  \implies \rm \:  \frac{sec \theta + tan \theta + (se {c}^{2}  \theta -  {tan}^{2} \theta) }{sec \theta - tan \theta + 1}  \\  \\

By using identity :

 \bf \:  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

:  \implies \rm \:  \frac{sec \theta + tan \theta  + (sec \theta + tan \theta)(sec \theta - tan \theta}{sec \theta - tan \theta + 1)}  \\  \\ :  \implies \rm \:  \frac{(sec \theta + tan \theta) \cancel{(1 +  (sec \theta - tan \theta)}}{{ \cancel{sec \theta - tan \theta + 1}}}  \\  \\ :  \implies \rm \: sec \theta + tan \theta \\

we know that,

 \bf \: sec \theta =  \frac{1}{cos \theta}  \\  \\   \bf \:tan \theta =  \frac{sin \theta}{ \cos \theta}

:  \implies \rm \:  \frac{1}{cos \theta}  +  \frac{sin \theta}{cos \theta}  \\  \\ :  \implies \rm \:  \frac{1 + sin \theta}{cos \theta}  = RHS

LHS = RHS

hence ,proved

━━━━━━━━━━━━━

Similar questions