Math, asked by tintin85, 1 year ago

(sec Φ - tan Φ)^2 = (1 - sinΦ) ÷(1 + sinΦ). prove it

Answers

Answered by Avengers00
14
\underline{\underline{\Huge{\textbf{Question:}}}}

\left(sec\: \phi - tan\: \phi\right)^{2} = \left(\dfrac{1-sin\: \phi}{1+sin\: \phi}\right)

\\

\underline{\underline{\Huge{\textbf{Solution:}}}}

\\

\underline{\huge{\textsf{Step-1:}}}
Consider LHS

\textbf{LHS\: =}

\left(sec\: \phi - tan\: \phi\right)^{2}

\\

\underline{\huge{\textsf{Step-2:}}}
Express sec\: \phi and tan\: \phi in terms of cos\: \phi

We have,
\bigstar \: \mathbf{ sec\: \phi = \left(\dfrac{1}{cos\: \phi}\right)}

\bigstar \: \mathbf{tan\: \phi = \left(\dfrac{sin\: \phi}{cos\: \phi}\right)}

On Substituting in LHS

\implies \left(\dfrac{1}{cos\: \phi} - \dfrac{sin\: \phi}{cos\: \phi}\right)^{2} ———[1]

\\

\underline{\huge{\textsf{Step-3:}}}
Simplify [1]

\implies \left(\dfrac{1-sin\: \phi}{cos\: \phi}\right)^{2}

\implies \left(\dfrac{\left(1-sin\: \phi\right)^{2}}{cos^{2} \: \phi} \right) ———[2]

\\

\underline{\huge{\textsf{Step-4:}}}
Express cos^{2}\: \phi in terms of sin\: \phi

\bigstar \: \mathbf{cos^{2}\: \phi + sin^{2}\: \phi= 1}

\implies\: cos^{2}\: \phi = 1-sin^{2}\: \phi

Substitute in [2]

\implies \left(\dfrac{\left(1-sin\: \phi\right)^{2}}{\left(1-sin^{2} \: \phi\right)} \right) ———[3]

\\

\underline{\huge{\textsf{Step-4:}}}
Using the Identity \mathbf{a^{2}-b^{2}= (a+b)(a-b)}

\implies 1-sin^{2} \: \phi = \left(1+sin\: \phi\right)\left(1-sin\: \phi\right)

Substitute in [3]

\implies \left(\dfrac{\left(1-sin\: \phi\right)^{2}}{\left(1+sin\: \phi\right)\left(1-sin\: \phi\right)} \right)

\implies \left(\dfrac{\left(1-sin\: \phi\right)^{ \cancel{2}}}{\left(1+sin\: \phi\right) \cancel{\left(1-sin\: \phi\right)}} \right)

\implies \left(\dfrac{\left(1-sin\: \phi\right)}{\left(1+sin\: \phi\right)} \right)

\textbf{ = \: RHS}

\mathbf{Hence\: Proved}

\\
Similar questions