secФ+tanФ=k,show that sinФ=k²-1by k²+1
Answers
Answered by
1
given that.......secФ +tanФ=k
tanФ=k-secФ
square the both sides
tan²Ф = k² + sec²Ф - 2ksecФ
tan²Ф = k² + 1 + tan²Ф - 2ksecФ
2ksecФ = k² + 1
square
secФ = (k² + 1)/2k
sec²Ф = (k⁴ + 1 + 2k²)/4k²
cos²Ф = 4k²/(k⁴ + 1 + 2k²)
1 - sin²Ф = 4k²/(k⁴ + 1 + 2k²)
sin²Ф = (k⁴ + 1 + 2k² - 4k²)/(k⁴ + 1 + 2k²)
sin²Ф = (k² - 1)²/(k² + 1)²
sinФ=k²-1by k²+1
tanФ=k-secФ
square the both sides
tan²Ф = k² + sec²Ф - 2ksecФ
tan²Ф = k² + 1 + tan²Ф - 2ksecФ
2ksecФ = k² + 1
square
secФ = (k² + 1)/2k
sec²Ф = (k⁴ + 1 + 2k²)/4k²
cos²Ф = 4k²/(k⁴ + 1 + 2k²)
1 - sin²Ф = 4k²/(k⁴ + 1 + 2k²)
sin²Ф = (k⁴ + 1 + 2k² - 4k²)/(k⁴ + 1 + 2k²)
sin²Ф = (k² - 1)²/(k² + 1)²
sinФ=k²-1by k²+1
Similar questions