Math, asked by sahilpatil2004, 11 months ago

sec + tan = p find value of cosec​

Answers

Answered by Anonymous
7

Solution :-

secθ + tanθ = p----eq(1)

We know that

sec²θ - tan²θ = 1

⇒ (secθ + tanθ)(secθ - tanθ) = 1

[ Beause x² - y² = (x + y)(x - y) ]

⇒ p(secθ - tanθ) = 1

⇒ secθ - tanθ = 1/p ----eq(2)

Adding eq(1) and eq(2)

⇒ secθ + tanθ + (secθ - tanθ) = p + 1/p

⇒ secθ + tanθ + secθ - tanθ = (p² + 1)/p

⇒ 2secθ = (p² + 1)/p

⇒ secθ = (p² + 1)/2p

Subracting eq(2) from eq(1)

⇒ secθ + tanθ - (secθ - tanθ) = p - 1/p

⇒ secθ + tanθ - secθ + tanθ = (p² - 1)/p

⇒ 2tanθ = (p² - 1)/p

⇒ tanθ = (p² - 1)/2p ---eq(4)

Dividing eq(3) by eq(4)

⇒ secθ/tanθ = [ (p² + 1)/2p ] / [ (p² - 1)/2p ]

⇒ [ 1/cosθ ] / [ sinθ/cosθ ] = (p² + 1) / (p² - 1)

⇒ 1/sinθ = (p² + 1) / (p² - 1)

⇒ cosecθ = (p² + 1) / (p² - 1)

Hence, the value of cosecθ is (p² + 1) / (p² - 1).

Answered by RvChaudharY50
71

\Large\underline\mathfrak{Question}

  • if sec A + tan A = p
  • Find cosec A = ?

\Large\bold\star\underline{\underline\textbf{Formula\:used}}

  • (a-b)² = a² + b² + ab
  • sec²A - tan²A = 1
  • Hypotenuse² = perpendicular ² + Base²
  • Tan @ = P/B
  • cosec A = H/P

\Large\underline{\underline{\sf{Solution}:}}

__________________

\red{\textbf{My Approach in Easiest way}} \:

secA + tanA = p  \\  \\ \red\leadsto \: secA = (p - tanA) \\  \\ squaring \: both \: sides \\  \\ \red\leadsto \: sec^{2} A  =  {p}^{2}   -  2ptanA + tan^{2} A \\  \\ \red\leadsto \: sec^{2} A - tan^{2} A = {p}^{2}   -  2ptanA \\  \\ \red\leadsto \: 1 = {p}^{2}   -  2ptanA \\  \\ \red\leadsto \: \large\boxed{\bold{tanA =  \frac{ {p}^{2}  - 1}{2p} }}

Now, we know that,

→ Tan A = P/B

Hence,

→ Perpendicular = (P²-1)

→ Base = 2P

so, By pythagoras theoram we get,

H^{2} = (p^{2} -1)^{2}  + (2p)^{2}  \\  \\ \red\leadsto \: H^{2} = \:  {p}^{4}  + 1  - 2 {p}^{2}  + 4 {p}^{2}  \\  \\\red\leadsto \:  H^{2} = \: {p}^{4}  + 1   +  2 {p}^{2} \\  \\ \red\leadsto \:  H^{2} = ( {p}^{2}  + 1) ^{2}  \\  \\  \green{\large\boxed{\bold{H = ( {p}^{2}  + 1)}}}

Now, we know that,

CosecA =  \frac{H}{P}  \\  \\ hence \\  \\\pink{\large\boxed{\boxed{\bold{ CosecA \:  =  \frac{ {p}^{2}  + 1}{ {p}^{2}  - 1} }}}}

\large\underline\textbf{Hope it Helps You.}

Similar questions