sec + tan = p find value of cosec
Answers
Solution :-
secθ + tanθ = p----eq(1)
We know that
sec²θ - tan²θ = 1
⇒ (secθ + tanθ)(secθ - tanθ) = 1
[ Beause x² - y² = (x + y)(x - y) ]
⇒ p(secθ - tanθ) = 1
⇒ secθ - tanθ = 1/p ----eq(2)
Adding eq(1) and eq(2)
⇒ secθ + tanθ + (secθ - tanθ) = p + 1/p
⇒ secθ + tanθ + secθ - tanθ = (p² + 1)/p
⇒ 2secθ = (p² + 1)/p
⇒ secθ = (p² + 1)/2p
Subracting eq(2) from eq(1)
⇒ secθ + tanθ - (secθ - tanθ) = p - 1/p
⇒ secθ + tanθ - secθ + tanθ = (p² - 1)/p
⇒ 2tanθ = (p² - 1)/p
⇒ tanθ = (p² - 1)/2p ---eq(4)
Dividing eq(3) by eq(4)
⇒ secθ/tanθ = [ (p² + 1)/2p ] / [ (p² - 1)/2p ]
⇒ [ 1/cosθ ] / [ sinθ/cosθ ] = (p² + 1) / (p² - 1)
⇒ 1/sinθ = (p² + 1) / (p² - 1)
⇒ cosecθ = (p² + 1) / (p² - 1)
Hence, the value of cosecθ is (p² + 1) / (p² - 1).
- if sec A + tan A = p
- Find cosec A = ?
- (a-b)² = a² + b² + ab
- sec²A - tan²A = 1
- Hypotenuse² = perpendicular ² + Base²
- Tan @ = P/B
- cosec A = H/P
__________________
Now, we know that,
→ Tan A = P/B
Hence,
→ Perpendicular = (P²-1)
→ Base = 2P
so, By pythagoras theoram we get,
Now, we know that,