Math, asked by architshukla4510stel, 5 months ago

Sec Ф -tanФ/sec Ф + tan Ф=1/4 .find sin Ф
If possible post a photo. You can take your time.....but please send the solution by photo....

Answers

Answered by anindyaadhikari13
5

Required Answer:-

Given:

  •  \sf \frac{ \sec(x) -  \tan(x) }{ \sec(x) +  \tan(x)  }  =  \frac{1}{4}

To find:

  • The value of \sf \sin(x)

Answer:

  • The value of sin(x) is 3/5

Solution:

 \sf \frac{ \sec(x) -  \tan(x) }{ \sec(x) +  \tan(x)  }  =  \frac{1}{4}

 \sf \implies 4( \sec(x)  -  \tan(x) ) =  \sec(x)  +  \tan(x)

 \sf \implies 4\sec(x)-4\tan(x)-\sec(x) -  \tan(x)  = 0

 \sf \implies 3\sec(x)-5\tan(x) = 0

 \sf \implies 3\sec(x) = 5\tan(x)

 \sf \implies  \frac{3}{5}  =  \frac{\tan(x)}{ \sec(x)}

We know that,

 \sf  \cos(x)  =  \frac{1}{ \sec(x) }

So,

 \sf \implies  \frac{3}{5}  = \tan(x)  \times  \cos(x)

We know that,

 \sf \tan(x)  =  \frac{ \sin(x) }{ \cos(x) }

 \sf \implies  \frac{3}{5}  = \frac{ \sin(x) }{ \cos(x) }   \times  \cos(x)

 \sf \implies \sin(x) =  \frac{3}{5}

Hence, the value of sin(x) is 3/5 which is our required answer.

Formulae Used:

  1.  \sf \tan(x)  = \frac{ \sin(x) }{ \cos(x) }
  2.  \sf \cos(x)  =  \frac{1}{ \sec(x) }
Attachments:
Answered by Anisha5119
4

Answer:

Heya mate here's the answer Mark as brainliest pleaseeeeee follow

Attachments:
Similar questions