sec - tane
1-2 sec 0 tan 0 + 2 tane
sec 0 + tan
Attachments:
Answers
Answered by
17
To prove:
On solving the LHS we get:
Multiply both the numerator and denominator by secθ - tanθ.
Identities used:
⇒ (a - b)(a - b) = (a - b)²
⇒ (a + b)(a - b) = a² - b²
Identities used:
⇒ (a - b)² = a² + b² - 2ab
⇒ sec²θ - tan²θ = 1
Identities used:
⇒ sec²θ = 1 + tan²θ
LHS = RHS
Hence proved.
Similar questions