Math, asked by jeesha07, 10 months ago

Sec teta + tan teta - 1/ tan teta - sec teta +1 = cod teta / 1- sin teta



Pls answer fast who ever is answering I will mark them as brainlist

I will cry pls give me answer

Attachments:

Answers

Answered by tahseen619
16

Solution:

See in the attachment.

Some Important Trigonometry Rules:

sinø . cosecø = 1

cosø . secø = 1

tanø . cotø = 1

sin²ø + cos²ø = 1

cosec²ø - cot² = 1

sec²ø - tan²ø = 1

Attachments:
Answered by shadowsabers03
17

Taking \sf{\sec\theta=\dfrac{1}{\cos\theta}} and \sf{\tan\theta=\dfrac{\sin\theta}{\cos\theta},} LHS becomes,

\longrightarrow\sf{\dfrac{\sec\theta+\tan\theta-1}{\tan\theta-\sec\theta+1}=\dfrac{\left(\dfrac{1}{\cos\theta}+\dfrac{\sin\theta}{\cos\theta}-1\right)}{\left(\dfrac{\sin\theta}{\cos\theta}-\dfrac{1}{\cos\theta}+1\right)}}

Taking \sf{1} as \sf{\dfrac{\cos\theta}{\cos\theta},}

\longrightarrow\sf{\dfrac{\sec\theta+\tan\theta-1}{\tan\theta-\sec\theta+1}=\dfrac{\left(\dfrac{1}{\cos\theta}+\dfrac{\sin\theta}{\cos\theta}-\dfrac{\cos\theta}{\cos\theta}\right)}{\left(\dfrac{\sin\theta}{\cos\theta}-\dfrac{1}{\cos\theta}+\dfrac{\cos\theta}{\cos\theta}\right)}}

\longrightarrow\sf{\dfrac{\sec\theta+\tan\theta-1}{\tan\theta-\sec\theta+1}=\dfrac{\left(\dfrac{1+\sin\theta-\cos\theta}{\cos\theta}\right)}{\left(\dfrac{\sin\theta-1+\cos\theta}{\cos\theta}\right)}}

Since \sf{\dfrac{\left(\dfrac{a}{c}\right)}{\left(\dfrac{b}{c}\right)}} can be taken as \sf{\dfrac{a}{b},}

\longrightarrow\sf{\dfrac{\sec\theta+\tan\theta-1}{\tan\theta-\sec\theta+1}=\dfrac{1+\sin\theta-\cos\theta}{\sin\theta-1+\cos\theta}}

\longrightarrow\sf{\dfrac{\sec\theta+\tan\theta-1}{\tan\theta-\sec\theta+1}=\dfrac{\sin\theta+1-\cos\theta}{\sin\theta-1+\cos\theta}}

Multiplying \sf{1-\sin\theta} on both numerator and denominator in RHS,

\longrightarrow\sf{\dfrac{\sec\theta+\tan\theta-1}{\tan\theta-\sec\theta+1}=\dfrac{(\sin\theta+1-\cos\theta)(1-\sin\theta)}{(\sin\theta-1+\cos\theta)(1-\sin\theta)}}

\longrightarrow\sf{\dfrac{\sec\theta+\tan\theta-1}{\tan\theta-\sec\theta+1}=\dfrac{(1+\sin\theta)(1-\sin\theta)-\cos\theta(1-\sin\theta)}{(\sin\theta-1+\cos\theta)(1-\sin\theta)}}

\longrightarrow\sf{\dfrac{\sec\theta+\tan\theta-1}{\tan\theta-\sec\theta+1}=\dfrac{1-\sin^2\theta-\cos\theta(1-\sin\theta)}{(\sin\theta-1+\cos\theta)(1-\sin\theta)}}

Since \sf{1-\sin^2\theta=\cos^2\theta,}

\longrightarrow\sf{\dfrac{\sec\theta+\tan\theta-1}{\tan\theta-\sec\theta+1}=\dfrac{\cos^2\theta-\cos\theta(1-\sin\theta)}{(\sin\theta-1+\cos\theta)(1-\sin\theta)}}

\longrightarrow\sf{\dfrac{\sec\theta+\tan\theta-1}{\tan\theta-\sec\theta+1}=\dfrac{\cos\theta(\sin\theta-1+\cos\theta)}{(\sin\theta-1+\cos\theta)(1-\sin\theta)}}

\longrightarrow\underline{\underline{\sf{\dfrac{\sec\theta+\tan\theta-1}{\tan\theta-\sec\theta+1}=\dfrac{\cos\theta}{1-\sin\theta}}}}

Hence Proved!

Similar questions