Math, asked by nikkijo2411, 4 months ago

(sec teta - tan teta)² = 1-sin teta/1 +sin teta​

Answers

Answered by vipashyana1
2

\bold{ \huge{ Answer :-  }}\\\bold{ {(secθ - tanθ)}^{2}  =  \frac{1 - sinθ}{1 + sinθ} }\\  secθ - tanθ =  \sqrt{ \frac{1 - sinθ}{1 + sinθ} }  \\ secθ - tanθ =  \sqrt{ \frac{1 - sinθ}{1 + sinθ} }  \times  \sqrt{ \frac{1 - sinθ}{1 - sinθ} }  \\ secθ - tanθ =  \sqrt{ \frac{(1 -sin θ)(1 -sinθ )}{(1 + sinθ)(1 -sinθ )} }  \\ secθ - tanθ =  \sqrt{ \frac{ {(1 - sinθ)}^{2} }{ {(1)}^{2} -  {(sinθ)}^{2}  } }  \\ secθ - tanθ = \sqrt{ \frac{ {(1 - sinθ)}^{2} }{1 -  {cos}^{2}θ } }  \\ secθ - tanθ =  \sqrt{ \frac{ {(1 -sinθ )}^{2} }{ {cos}^{2}θ } }  \\ secθ - tanθ =  \frac{1 - sinθ}{cosθ}  \\ secθ - tanθ =  \frac{1}{cosθ}  -  \frac{sinθ}{cosθ}  \\ secθ - tanθ = secθ - tanθ \\ LHS=RHS \\ Hence \: proved

Similar questions