Math, asked by rajeshkasaveni36, 10 months ago

√(sec tetha+1)(sec tetha-1)


Answers

Answered by Otkau
1

Answer:

=TanA

P.s. I will be Replacing theta with A

Step-by-step explanation:

\sqrt{(SecA +1)( SecA -1)} \\

=\sqrt{Sec^{2} -1}a^{2}-b^{2} = (a-b)(a+b)

=\sqrt{Tan^{2}A}Sec^{2}A -Tan^{2} = 1

=TanA

Answered by rtcpcx
0

Answer:

 \tan(theeta)

Step-by-step explanation:

we know that

 { \sec(theeta) }^{2}   - 1 =  { \tan(theeta) }^{2}

by using identities

 {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

 {  \sec(theeta)  }^{2}  - 1 =( sec{theeta} - 1)(sectheeta + 1)

   \sqrt[2]{ (\sec(theeta)  + 1)( \sec(theeta) - 1) }=   \sqrt{ { \tan(theeta) }^{2} }

Similar questions