Math, asked by yadavmahe042, 11 months ago

sec^theeta=1+tan^theeta

Answers

Answered by rsahoo2704
0

This is an identity......

Answered by amitkumar44481
1

To Prove :

 \tt\dagger \:  \:  \:  \:  \: 1 + {tan}^{2}  \theta=  {sec}^{2} \theta.

Solution :

We have,

  • Right Angle Triangle ABC.

By Pythagoras theorem, We can say that.

 \tt \dagger  \:  \:  \:  \:  \: {H}^{2}  = {P}^{2}  + {B}^{2}

Where as,

  • Hypotenuse = AC
  • Perpendicular = AB
  • Base = BC

Let Divided both sides by H², We get.

 \tt\longmapsto   \dfrac{{H}^{2}}{{H}^{2} }=  \dfrac{{P}^{2}}{{H}^{2}} +  \dfrac{{B}^{2}}{ {H}^{2}}

Note :

  \tt\bullet  \:  \:  sin\theta =  \dfrac{Perpendicular}{Hypotenuse}

  \tt\bullet  \:  \:  cos\theta =  \dfrac{Base}{Hypotenuse}

  \tt\bullet  \:  \:  tan\theta =  \dfrac{Perpendicular}{Base}

So,

 \tt\longmapsto   1 =  {sin}^{2}  \theta +  {cos}^{2}  \theta.

 \tt\longmapsto    {sin}^{2}  \theta +  {cos}^{2}  \theta = 1.

\rule{100}2

Now,

 \tt\dagger   \:  \:  \:  \:  \:   {sin}^{2}  \theta +  {cos}^{2}  \theta = 1.

Divide both sides by Cos theta, We get.

 \tt\longmapsto  \dfrac{{sin}^{2} \theta}{{cos}^{2} \theta} +  \dfrac{{cos}^{2}  \theta }{{cos}^{2} \theta} =  \dfrac{1}{{cos}^{2}\theta}

 \tt\longmapsto   {tan}^{2}  \theta + 1 =  {sec}^{2} \theta.

 \tt\longmapsto 1 + {tan}^{2}  \theta=  {sec}^{2} \theta.

Hance Proved.

\rule{200}3

\boxed{ \begin{minipage}{6 cm} Fundamental Trigonometric Identities \\ \\  $\sin^2\theta + \cos^2\theta=1 \\ \\ 1 +\tan^2\theta = \sec^2\theta \\ \\ 1 +\cot^2\theta = \text{cosec}^2 \, \theta$\end{minipage}}

Attachments:
Similar questions