Math, asked by raj198, 1 year ago

(sec theta-1)/sec theta+1 = (cot theta-cosec theta)^2

Answers

Answered by gauravmittal9718
21

Answer:

Step-by-step explanation:

Attachments:
Answered by mysticd
17

Answer:

\frac{sec\theta-1}{sec\theta+1}\\=\big(cosec\theta-cot\theta\big)^{2}

Step-by-step explanation:

LHS=\frac{sec\theta-1}{sec\theta+1}

=\frac{\frac{1}{cos\theta}-1}{\frac{1}{cos\theta}+1}

=\frac{\frac{1-cos\theta}{cos\theta}}{\frac{1+cos\theta}{cos\theta}}

=\frac{1-cos\theta}{1+cos\theta}

=\frac{(1-cos\theta)(1-cos\theta)}{(1+cos\theta)(1-cos\theta)}\\=\frac{(1-cos\theta)^{2}}{1^{2}-cos^{2}\theta}\\=\frac{(1-cos\theta)^{2}}{sin^{2}\theta}\\=\big(\frac{1-cos\theta}{sin\theta}\big)^{2}\\=\big(\frac{1}{sin\theta}-\frac{cos\theta}{sin\theta}\big)^{2}\\=\big(cosec\theta-cot\theta\big)^{2}\\=RHS

••♪

Similar questions