Math, asked by aaryankhera, 1 year ago

sec theta= 13/12 find sin theta- 2 cos theta/tan theta - cot theta
plss help​

Answers

Answered by aayyuuss123
1

Answer:

Hope it helps you...

Step-by-step explanation:

Please mark as brilliantly and follow me....

Attachments:
Answered by Anonymous
1

________________________❤

{\underline{\huge{\mathbf{\color{pink}{Question}}}}}

 if sec Θ = \dfrac{13}{12}

 find ;\dfrac {sin Θ-2 cosΘ}{tan Θ - cot Θ}

{\underline{\huge{\mathbf{\color{pink}{step\:by\:step\:solution}}}}}

 if sec Θ = \dfrac{13}{12}

 if sec Θ = \dfrac{hypotenuse}{base}

  • applying Pythagoras theoram

 h^2 = p^2 - b^2

 13^2 = p^2 - 12^2

169- 144 = p^2

 25 = p^2

 p= \sqrt25

 p= 5

  • finding value of sinΘ, cosΘ, tanΘ, cotΘ

sinΘ = \dfrac{p}{h} = \dfrac{5}{13}

 cosΘ= \dfrac{b}{h} = \dfrac{12}{13}

tan Θ = \dfrac{p}{b} = \dfrac{5}{12}

cotΘ = \dfrac{b}{p} = \dfrac{12}{5}

  • putting value in equation

 \dfrac {sin Θ-2 cosΘ}{tan Θ - cot Θ}

\dfrac{\dfrac{12}{13}-\dfrac{2*12}{13}}{\dfrac{2*5}{12}-\dfrac{12}{5}}

\dfrac{\dfrac{12}{13}-\dfrac{24}{13}}{\dfrac{10}{12}-\dfrac{12}{5}}

\dfrac{\dfrac{12-24}{13}}{\dfrac{50-120}{60}}

\dfrac{\dfrac{-12}{13}}{\dfrac{-70}{60}}

\dfrac{-12*60}{13*-70}

\dfrac{12*6}{13*7}

\dfrac{72}{91}

___________________________❤

Similar questions