Math, asked by mysonvasanth731, 1 day ago

(sec theta -cos theta)²-(cosec thetha-sin thetha)²-(cot thetha - tan thetha)²​

Answers

Answered by Sen0rita
10

SoluTion :

 \:

 \sf :  \implies \: (sec \theta - cos \theta) {}^{2}  - (cosec \theta - sin \theta) {}^{2}  - (cot \theta - tan \theta) {}^{2}

 \:

 \sf  : \implies \: (sec {}^{2}  \theta + cos {}^{2}  \theta - 2sec \theta \: cos \theta) - (cosec \theta + sin \theta - 2 cosec \theta \: sin \theta) - (cot \theta + tan \theta - 2cot \theta \: tan \theta)

 \:

 \sf :  \implies \:  \left( sec {}^{2}  \theta + cos {}^{2}   \theta - 2sec \theta \dfrac{1}{sec \theta}\right)  -  \left(cosec {}^{2}  \theta + sin {}^{2}  \theta - 2cosec \theta \dfrac{1}{cosec \theta}  \right) -  \left(cot {}^{2} \theta  \:  + tan {}^{2} \theta - 2cot \theta \dfrac{1}{cot \theta}    \right)

 \:

 \sf :  \implies \: (sec {}^{2}  \theta + cos {}^{2}  \theta - 2) - (cosec {}^{2} \theta + sin {}^{2} \theta - 2) - (cot {}^{2}    \theta + tan {}^{2}  \theta - 2)

 \:

 \sf :  \implies \: sec {}^{2}  \theta + cos {}^{2}  \theta - 2 - cosec {}^{2}  \theta - sin {}^{2}  \theta + 2 - cot {}^{2}  \theta - tan {}^{2}  \theta + 2

 \:

 \sf :  \implies \: sec {}^{2}  \theta \:  + cos {}^{2}  \theta - cosec {}^{2}  \theta - sin {}^{2}  \theta - cot {}^{2}  \theta - tan {}^{2}  \theta + 2

Similar questions