Sec theta - cos theta* cot theta +tan theta =tan theta*sec theta
Answers
Answered by
2
using trigonometric identities..
hope this is helpful!!
Attachments:
Answered by
6
To prove :
(sec θ - cos θ) × (cot θ + tan θ) = tan θ sec θ
Proof :
Taking LHS
→ LHS = (sec θ - cos θ) × (cot θ + tan θ)
putting sec θ = 1 / cos θ and cot θ = 1 / tan θ
→ LHS = [(1/cos θ) - cos θ] × [(1/tan θ) + tan θ]
Taking LCM
→ LHS = [(1 - cos²θ)/cos θ] × [(1 + tan²θ)/tan θ]
using trigonometric identity : 1 - cos²θ = sin²θ and 1 + tan²θ = sec²θ
→ LHS = ( sin²θ / cos θ ) × ( sec²θ / tan θ )
using sin θ / cos θ = tan θ
→ LHS = tan θ sin θ × ( sec²θ / tan θ )
→ LHS = sin θ sec²θ
Taking RHS
→ RHS = tan θ sec θ
putting tan θ = sin θ / cos θ
→ RHS = (sin θ / cos θ) sec θ
putting cos θ = 1 / sec θ
→ RHS = sin θ sec²θ
So,
LHS = RHS
Proved .
Similar questions