Math, asked by aashipatel2814, 5 hours ago

(sec theta + cos theta) (sec theta- cos theta)= tan^2theta+ sin^2theta​

Answers

Answered by smjee07012005
0

Step-by-step explanation:

hope it helps... mark me as brainliest..

Attachments:
Answered by hemanji2007
1

Topic:-

Trigonometry

Question:-

prove \: that \\  \\ (sec \theta + cos \theta)(sec \theta - cos \theta) =  {tan}^{2}  \theta +  {sin}^{2}  \theta

Solution:-

take \: lhs \:  \\  \\ (sec \theta + cos \theta)(sec \theta - cos \theta) \\  \\    we \: know \: that \: (a + b)(a - b) =  {a}^{2} -  {b}^{2}   \\  \\  =  {sec}^{2}  \theta -  {cos}^{2}  \theta \\  \\  = (1 +  {tan}^{2}  \theta) - (1 -  {sin}^{2}  \theta) \\  \\  = 1 +  {tan}^{2}  \theta - 1 +  {sin}^{2}  \theta \\  \\  =  \cancel{1} +  {tan}^{2}  \theta \:  \cancel{ - 1} +  {sin}^{2}  \theta \\  \\  =  {tan}^{2}  \theta +  {sin}^{2}  \theta \\  \\  = rhs \\  \\ hence \: proved

More Information:-

Trigon metric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonmetric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Similar questions