Math, asked by Mb9211, 9 months ago

Sec theta plus tan theta equal p then find the value of sectheta minus tan theta

Answers

Answered by anjanaparvathy2003
2

sec θ + tan θ = p,

(1/cosθ)+(sinθ/cosθ)=p

(1+sinθ)/cosθ=p

squaring both sides gives

(1+sinθ)²/cos²θ=p²

(1+sinθ)²/(1-sin²θ)=p²

(1+sinθ)( 1+sinθ)/{(1+sinθ )(1-sinθ )}=p²

(1+sinθ)/(1-sinθ )=p²

1+sinθ =p²(1-sinθ )

1+sinθ =p² -p²sinθ

sinθ -p²sinθ=p² -1

sinθ(1 -p²)=(p² -1)

Hence sinθ=(p² -1)/(1 -p²)

and cosecθ =1/sinθ =(1 -p²)/(p² -1)

Answered by AhmedZawadToukir
0

Answer:

1/p

Step-by-step explanation:

We know that,

sec²θ-tan²θ=1

=>(secθ+tanθ)(secθ-tanθ)=1

=>p(secθ-tanθ)=1

=>secθ-tanθ=1/p

Similar questions