Sec theta plus tan theta equal p then find the value of sectheta minus tan theta
Answers
Answered by
2
sec θ + tan θ = p,
(1/cosθ)+(sinθ/cosθ)=p
(1+sinθ)/cosθ=p
squaring both sides gives
(1+sinθ)²/cos²θ=p²
(1+sinθ)²/(1-sin²θ)=p²
(1+sinθ)( 1+sinθ)/{(1+sinθ )(1-sinθ )}=p²
(1+sinθ)/(1-sinθ )=p²
1+sinθ =p²(1-sinθ )
1+sinθ =p² -p²sinθ
sinθ -p²sinθ=p² -1
sinθ(1 -p²)=(p² -1)
Hence sinθ=(p² -1)/(1 -p²)
and cosecθ =1/sinθ =(1 -p²)/(p² -1)
Answered by
0
Answer:
1/p
Step-by-step explanation:
We know that,
sec²θ-tan²θ=1
=>(secθ+tanθ)(secθ-tanθ)=1
=>p(secθ-tanθ)=1
=>secθ-tanθ=1/p
Similar questions
Chemistry,
5 months ago
Math,
5 months ago
Physics,
5 months ago
Social Sciences,
9 months ago
Math,
9 months ago