Math, asked by anjali352, 1 year ago

sec theta- tan theta = 1/root 3 then the value of sec theta+ tan theta??

Answers

Answered by TheLifeRacer
14
Hey !!!

Sec¢ - tan¢ = 1/√3 (given)

we know that sec²¢ - tan²¢ = 1

sec²¢ - tan²¢ =( sec¢ - tan¢ )(sec¢ + tan¢ ) = 1
like a²-b² = (a+b)(a-b)

(1/√3)(sec¢ + tan¢) = 1 [ •°•sec¢ - tan¢ = 1/√3 given )

so .. sec¢ + tan¢ = √3 Answer

**********************************
Hope it helps you !!!


@Rajukumar111

Answered by harendrachoubay
2

The value of \sec \theta+\tan \theta is \sqrt{3}.

Step-by-step explanation:

We have,

\sec \theta-\tan \theta=\dfrac{1}{\sqrt{3}}       .....(1)

To find, the value of \sec \theta+\tan \theta=?

We know that,

\sec^{2} \theta-\tan^{2} \theta=1

(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)=1

[ ∵ a^{2} -b^{2} =(a-b)(a+b)]

Using (1), we get

(\dfrac{1}{\sqrt{3}} )(\sec \theta+\tan \theta)=1

\sec \theta+\tan \theta=\sqrt{3}

Hence, the value of \sec \theta+\tan \theta is \sqrt{3}.

Similar questions