(sec theta +tan theta-1)(sec theta -tan theta+1)=2 tan theta
Answers
Answered by
2
I hope it is useful ☺️☺️☺️☺️
Attachments:
Answered by
5
Answer:
2 tanθ
Step-by-step explanation:
To prove--->
--------------
(Secθ +tanθ -1) (Secθ - tanθ + 1)=2 tanθ
Proof--->
----------
LHS = (Secθ + tanθ -1) ( Secθ - tanθ + 1)
={ (Secθ)+(tanθ - 1)} { (Secθ ) - (tanθ -1)}
applying (a + b ) ( a - b ) = a² - b²
= ( Sec θ )² - ( tanθ - 1 )²
We have an identity
( a - b )² = a² + b² - 2a b ,applying it here
= Sec² θ - ( tan² θ + 1 - 2 tanθ )
= Sec²θ - tan²θ - 1 + 2 tanθ
We have an identity
Sec²θ - tan²θ = 1, applying it here
= 1 - 1 + 2 tanθ
1 and (-1) cancel out each other
= 2 tan θ = RHS
Additional information--->
------------------------------------
1) Sin²θ + Cos²θ =1
2) 1 + tan²θ = Sec²θ
3) 1 + Cot²θ = Cosec²θ
Similar questions
Math,
6 months ago
Psychology,
6 months ago
Science,
6 months ago
English,
1 year ago
Physics,
1 year ago