(Sec theta - Tan theta) =1-sin theta / 1+sin theta
Answers
Answered by
1
Step-by-step explanation:
Take LHS.
Let us square the LHS
So , (Sec θ -tan θ)²
We know [Sec θ=1/Cos θ] and [Tan θ=Sin θ/Cos θ]
(1/Cos θ - Sin θ/Cos θ)²
(1-Sin θ/Cos θ)²
(1-Sin θ)²/Cos² θ
[Splitting (1-Sin θ)² =(1-Sin θ) (1-Sin θ)]
[Cos² θ =1-Sin² θ]
So, (1-Sin θ) (1- Sin θ) / 1-Sin² θ
(1-Sin θ) (1-Sin θ) / (1-Sin θ) (1+Sin θ)
[1-Sin θ gets cancelled in both numerator and denominator]
So, (1-Sin θ)/ (1+Sin θ)
Hence proved........
Similar questions