(Sec theta - tan theta)2 (1 + sin theta)= 1 - sin theta
Answers
Answered by
0
Answer:
Prove that :-
→ (secθ - tanθ)² = \bf \frac{ 1-sin \theta }{1+sin \theta } .
Solution :-
→ (sec θ - tan θ )².
⇒ ( \bf \frac{1}{ cos \theta } - \frac{ sin \theta }{ cos \theta } )² .
⇒ ( \bf \frac{ 1 - sin \theta }{ cos \theta } )² .
⇒ \bf\frac{{(1 - sin \theta })^{2}} {{cos}^{2} \theta} .
⇒ \bf \frac{ ( 1 - sin \theta )(1 - sin \theta ) }{1 - {sin}^{2} \theta }
⇒ \bf \frac{ \cancel{ ( 1 - sin \theta )} (1 - sin \theta ) }{ \cancel{ ( 1 - sin \theta ) } ( 1 + sin \theta ) }
⇒ (secθ - tanθ)² = \bf \frac{ 1-sin \theta }{1+sin \theta } .
Hence, it is proved.
THANKS
Answered by
3
Step-by-step explanation:
hope it is helpful to you............
Attachments:
Similar questions