Science, asked by khuranakartik215, 8 months ago

(sec theta-tan theta)^2=1-sin theta/1+sin theta​

Answers

Answered by samyakbhansali2004
1

Hey there !!

Prove that :-

→ (secθ - tanθ)² = \bf \frac{ 1-sin \theta }{1+sin \theta }.

Solution :-

→ (sec θ - tan θ )².

( \bf \frac{1}{ cos \theta } - \frac{ sin \theta }{ cos \theta }  )² .

(  \bf \frac{ 1 - sin \theta }{ cos \theta }  )² .

⇒  \bf\frac{{(1 - sin \theta })^{2}} {{cos}^{2} \theta} .

⇒  \bf \frac{ ( 1 - sin \theta )(1 - sin \theta ) }{1 - {sin}^{2} \theta }

\bf \frac{ \cancel{ ( 1 - sin \theta )} (1 - sin \theta ) }{ \cancel{ ( 1 - sin \theta ) } ( 1 + sin \theta ) }

⇒ (secθ - tanθ)² = \bf \frac{ 1-sin \theta }{1+sin \theta } .

Hence, it is proved.

please don't mind the A ,its some glitch,and also mark me brainliest thanks

Similar questions