(sec theta- tan theta)²= 1-sin theta/1+sin theta
Answers
Answer:
LHS=(sec∅ - tan∅)²
=(1/cos∅-sin∅/cos∅)²
=(1-sin∅/cos∅)²
LHS=1+sin²∅-2sin∅/cos²∅
RHS=1-sin∅/1+sin∅
=(1-sin∅)(1-sin∅)/(1+sin∅)(1-sin∅)
=(1-sin∅)²/1-sin²∅
RHS=1+sin²∅-2sin∅/cos²∅
Hence, LHS = RHS
Hence proved
Answer:
Prove that: ( Sec theta - tan theta )²
= 1- sin theta / 1+ sin theta
Now, R.H.S : = 1- sin theta / 1 + sin theta
= (1- sin theta) ( 1- sin theta)
______________________
( 1+ sin theta ) ( 1- sin theta)
= ( 1-sin theta )²
____________............[ since,(a+b) (a-b) = a²-b²]
( 1- sin² theta)
= (1-sin theta )²
____________..........[ Since, 1- sin²A = Cos²A]
( cos ² theta )
= [( 1- sin theta) / (Cos theta)]²...[ since , (a/b)^ m =
a^m/b^m ]
= [( 1/Cos theta ) - (sin theta / Cos theta ) ]²
= ( sec theta - tan theta )²
= L.H.S
Therefore, L.H.S = R.H S
Hence , proved