Math, asked by ska479364, 11 months ago

sec theta + tan theta is equal to p so prove that sin theta = p^2-1/p^2+1​

Answers

Answered by ihrishi
1

Step-by-step explanation:

sec \:  \theta + tan \:  \theta = p \\  \\  \therefore \:  \frac{1}{cos \:  \theta}  + \frac{sin\:  \theta}{cos \:  \theta}  = p \\  \\ \therefore \:  \frac{1 + sin\:  \theta}{cos \:  \theta}  = p \\  \\ \therefore \: (1 + sin\:  \theta) = p \: cos \:  \theta \\  \\ \therefore \: (1 + sin \:  \theta) ^{2}= p \: cos ^{2}  \:  \theta  \\  \\ \therefore \: (1 + sin \:  \theta) ^{2}= p^{2}  \: (1 - sin ^{2}  \:  \theta)  \\  \\ \therefore \: (1 + sin \:  \theta) ^{2}= p^{2} \: (1 - sin  \:  \theta) (1  +  sin  \:  \theta)  \\  \\  \therefore \: (1 + sin \:  \theta) = p^{2}  \: (1 - sin  \:  \theta)  \\  \\ \therefore \: 1 + sin \:  \theta =p^{2}   - p^{2}  sin  \:  \theta \\  \\  \therefore \: (1 +  p^{2})  sin  \:  \theta = p^{2} - 1 \\  \\ sin  \:  \theta = \frac{ {p}^{2} - 1 }{ {p}^{2}  + 1}

Similar questions