Math, asked by roshanmishra1141, 1 month ago

Sec theta+tan theta=k then find sin theta

Answers

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find \:  =  \\ value \: of \: sin \: θ \: (in \: terms \: of \: k) \\  \\ so \: here \:  \\ sec \: θ + tan \: θ = k  \:  \:  \:  \:  \:  \: (1)\\ so \: we \: know \: that \\ sec {}^{2} θ - tan {}^{2} θ = 1 \\ ie \: (sec \: θ + tan \: θ)(sec \: θ - tan \: θ) = 1 \\ k.(sec \: θ - tan \: θ) = 1 \\  \\ sec \: θ - tan \: θ =  \frac{1}{k}  \:  \:  \:  \:  \:  \:  \: (2)

adding \: (1) \: and \: (2) \\ we \: get \:  \\ sec \: θ + sec \: θ = 1 +  \frac{1}{k}  \\  \\ 2.sec \: θ =  \frac{k {}^{2}  + 1}{k}  \\  \\ ie \: sec \: θ =  \frac{k {}^{2}  + 1}{2k}  \\  \\ thus \: then \\ cos \: θ =  \frac{2k}{k {}^{2}  + 1}

we \: know \: that \\ sin {}^{2} θ + cos {}^{2} θ = 1 \\ ie \:  \: sin {}^{2} θ = 1 - cos {}^{2} θ \\  \\  = 1 - ( \frac{2k}{k {}^{2} + 1 } ) {}^{2}  \\  \\  = 1 -  \frac{4k {}^{2} }{k {}^{4}  + 1 + 2k {}^{2} }  \\  \\  =  \frac{k {}^{4}  + 1 + 2k {}^{2} - 4k {}^{2}  }{k {}^{4}  + 1 + 2k {}^{2} }  \\  \\  =  \frac{k {}^{4} + 1 - 2k {}^{2}  }{k {}^{4} + 1 + 2k {}^{2}  }  \\  \\  =  \frac{(k - 1) {}^{2} }{(k + 1) {}^{2} }  \\  \\  = ( \frac{k - 1}{k + 1}  \: ) {}^{2}  \\  \\ taking \: square \: roots \: on \: both \: sides \\ we \: get  \\ \\ sin \: θ = ± \:  \frac{k - 1}{k + 1}

Similar questions