Math, asked by atishranjan2000, 1 year ago

sec theta -tan theta=p+1/p-1 then find cos theta

Answers

Answered by Anonymous
32

Answer:

Step-by-step explanation:

secθ-tanθ=p+1/p-1----------------(1)

sec²θ-tan²θ=1

sec²θ-tan²θ/secθ-tanθ=1/p+1/p-1=p-1/p+1

secθ+tanθ=p-1/p+1----------------(2)

adding (1)  and (2)

2secθ=p+1/p-1-+p-1/p+1

=1/p²-1(p+1+p-1)

2secθ=2p/p²-1

secθ=p/p²-1

cosθ=p²-1/p


Anonymous: what is lol
Anonymous: ooh
Anonymous: no more unnecessary comments
Anonymous:       Ťhe Énd!       
Anonymous: ok bye bye every body
Answered by Anonymous
115

\mathfrak{\underline{\underline{\green{Answer:-}}}}

cosA = \dfrac{{p}^{2}-1}{{p}^{2}+1}

\mathfrak{\underline{\underline{\green{Explanation:-}}}}

Given:-

\mathsf{ secA-tanA = \dfrac{p+1}{p-1}}

\\

To Find:-

\mathsf{cosA }

\\

Solution:-

\mathsf{Let, \: secA-tanA = \dfrac{p+1}{p-1} ------(1)}

\\

As we know,

\star\boxed{\red{{sec}^{2}A-{tan}^{2}A= 1}}

So,

\mathsf{ {sec}^{2}A-{tan}^{2}A = 1}

By the Identity

\star\boxed{\red{{a}^{2}-{b}^{2}=(a+b)(a-b) }}

\\

\mathsf{(secA+tanA)(secA-tanA) = 1}

\mathsf{(secA+tanA)(\dfrac{p+1}{p-1} ) = 1}

\mathsf{ secA+tanA=\dfrac{p-1}{p+1} --------(2)}

\\

Now, add (1) and (2)

\mathsf{ secA-tanA +secA+tanA = \dfrac{p+1}{p-1} + \dfrac{p-1}{p+1}}

\\

\mathsf{ 2secA = \dfrac{{(p+1)}^{2} + {(p-1)}^{2} }{(p+1)(p-1)} }

\\

\mathsf{ 2secA = \dfrac{{p}^{2}+1+2p+{p}^{2}+1-2p}{(p+1)(p-1)} }

\\

\mathsf{ 2secA = \dfrac{2{p}^{2}+2}{{p}^{2} -1}}

\\

\mathsf{ secA = \dfrac{2({p}^{2}+1)}{2({p}^{2}-1)} }

\\

\mathsf{ secA = \dfrac{\cancel{2}({p}^{2}+1)}{\cancel{2}({p}^{2}-1)} }

\\

\mathsf{ secA = \dfrac{{p}^{2}+1}{{p}^{2}-1} }

\\

\star \boxed{\red{secA= \dfrac{1}{cosA}}}

\\

\mathsf{ \dfrac{1}{cosA} = \dfrac{{p}^{2}+1}{{p}^{2}-1} }

\\

\mathsf{ cosA = \dfrac{{p}^{2}-1}{{p}^{2}+1} }

\\

Hence,

\mathsf{ cosA = \dfrac{{p}^{2}-1}{{p}^{2}+1} }

\\

\mathbb{\pink{NOTE:-}}

Assume 'A' as 'Theta'


BrainlyElegantdoll: :Claps: Hatz off man❤️
DhanyaDA: great @macha
Anonymous: fabulous answer bro❤️❤️❤️❤️❤️
Anonymous: you know meaning of fabulous
Anonymous: Nice!
janvi47: Oh genius mr. Aryabhatta
sairambandari: osm broo
sairambandari: ❤❤
Similar questions