English, asked by gaurav9558, 11 months ago

sec theta + tan theta P then prove that p square + 1 upon p square minus 1 is equal to sin theta​

Answers

Answered by saisakthivelrap8x9ia
1

Answer:

sec^2-tan^2=1                 let teta be x

given 

secx+tanx=p...................(1)

(secx+tanx)(secx-tanx)=1

p(secx-tanx)=1

secx-tanx=1/p...................(2)

add eq(1) and eq(2)

we will get 

secx=p^2+1/p

subtract eq(1) and eq(2)

we will get

tanx=p^2-1/p

we know that 

tanx/secx=sinx

then

p^2-1/p/p^2+1/p=sinx

therefore

p^2-1/p^2+1=sinx

hence proved

Explanation:

Similar questions