sec theta + tan theta P then prove that p square + 1 upon p square minus 1 is equal to sin theta
Answers
Answered by
1
Answer:
sec^2-tan^2=1 let teta be x
given
secx+tanx=p...................(1)
(secx+tanx)(secx-tanx)=1
p(secx-tanx)=1
secx-tanx=1/p...................(2)
add eq(1) and eq(2)
we will get
secx=p^2+1/p
subtract eq(1) and eq(2)
we will get
tanx=p^2-1/p
we know that
tanx/secx=sinx
then
p^2-1/p/p^2+1/p=sinx
therefore
p^2-1/p^2+1=sinx
hence proved
Explanation:
Similar questions