Math, asked by akansha123456, 1 year ago

sec theta -tan theta/sec theta+tan theta=cos^2theta/(1+sin theta)^2​

Attachments:

Answers

Answered by priyanshi776
7

I think this will help you!!

Attachments:

priyanshi776: please mark it as brainlist
akansha123456: kesa karta ha
priyanshi776: Brainliest' answer refers to 'the best answer' out of the two answers you get when asked a question. If you are the 'Author' or the 'asker' of the question, then only you can chose. After two answers have been given, you get an option to 'Mark as Brainliest Answer', for theanswer you found the most useful.
Answered by SujalSirimilla
5

\LARGE{\bf{\underline{\underline{TO \ FIND:-}}}}

\bullet \ \sf \dfrac{sec \theta - tan \theta}{sec \theta + tan \theta} =\dfrac{cos^2 \theta}{(1+sin \theta)^2}

\LARGE{\bf{\underline{\underline{SOLUTION:-}}}}

SIMPLIFY LHS AND RHS SEPARATELY.

RHS:

\sf \to \dfrac{cos^2 \theta}{(1+sin \theta)^2}

Use sin²θ + cos²θ = 1 ⇒ cos²θ = 1 - sin²θ

\sf \to \dfrac{(1-sin^2 \theta)}{(1+sin \theta)^2}

Use a² - b² = (a + b) (a - b) and (a + b)² = (a + b)(a + b)

\sf \to \dfrac{(1-sin \theta)\cancel{(1+sin \theta)}}{(1+sin \theta)\cancel{(1+sin \theta)}}

\sf \to \boxed{\sf{\green{\dfrac{(1-sin \theta)}{(1+sin \theta)}}}}

LHS:

\to \ \sf \dfrac{sec \theta - tan \theta}{sec \theta + tan \theta}

Use secθ = 1/cosθ and tanθ = sinθ/cosθ.

\to \ \sf \dfrac{\dfrac{1}{cos  \theta} - \dfrac{sin \theta}{cos \theta} }{\dfrac{1}{cos \theta}  + \dfrac{sin \theta}{cos \theta} }

Simplify.

\to \ \sf \dfrac{\dfrac{1 - sin \theta}{cos  \theta}  }{ \dfrac{1+sin \theta}{cos \theta} }

\to \ \sf \dfrac{1 - sin \theta}{cos  \theta}  } \times \dfrac{cos \theta}{1 + sin \theta}

\sf \to \boxed{\sf{\green{\dfrac{(1-sin \theta)}{(1+sin \theta)}}}}

LHS = RHS.

HENCE PROVED.

FUNDAMENTAL TRIGONOMETRIC IDENTITIES:

\boxed{\substack{\displaystyle \sf sin^2 \theta+cos^2 \theta = 1 \\\\  \displaystyle \sf 1+cot^2 \theta=cosec^2 \theta \\\\ \displaystyle \sf 1+tan^2 \theta=sec^2 \theta}}

T-RATIOS:

[tex]\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 & \sqrt{3} & \rm Not \: De fined \\ \\ \rm cosec A & \rm Not \: De fined & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm Not \: De fined \\ \\ \rm cot A & \rm Not \: De fined & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array} [/tex]

Regards,

SujalSirmilla

Ex-brainly star.

Similar questions