sec theta -tan theta/sec theta+tan theta=cos^2theta/(1+sin theta)^2
Answers
I think this will help you!!
SIMPLIFY LHS AND RHS SEPARATELY.
RHS:
Use sin²θ + cos²θ = 1 ⇒ cos²θ = 1 - sin²θ
Use a² - b² = (a + b) (a - b) and (a + b)² = (a + b)(a + b)
LHS:
Use secθ = 1/cosθ and tanθ = sinθ/cosθ.
Simplify.
LHS = RHS.
HENCE PROVED.
FUNDAMENTAL TRIGONOMETRIC IDENTITIES:
T-RATIOS:
[tex]\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 & \sqrt{3} & \rm Not \: De fined \\ \\ \rm cosec A & \rm Not \: De fined & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm Not \: De fined \\ \\ \rm cot A & \rm Not \: De fined & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array} [/tex]
Regards,
SujalSirmilla
Ex-brainly star.