Sec theta - tan theta= x show that sin theta =1/2[x+1/x] and tan theta= 1/2[1/x-x]
Answers
Answered by
16
Modified question should be
If secθ - tanθ = x, then find sinθ, cosθ and tanθ.
Formula :
• sec²θ - tan²θ = 1
• a² - b² = (a + b) (a - b)
• sin²θ + cos²θ = 1
• (a + b)² - 4ab = (a - b)²
Solution :
Given that, secθ - tanθ = x ...(i)
We know that, sec²θ - tan²θ = 1
or, (secθ + tanθ) (secθ - tanθ) = 1
or, (secθ + tanθ) * x = 1
or, secθ + tanθ = 1/x ...(ii)
Now, (i) + (ii) gives
2 secθ = x + 1/x
or, secθ = (x² + 1)/(2x)
or, cosθ = 2x/(x² + 1)
Then, sin²θ = 1 - cos²θ
= 1 - {2x/(x² + 1)}²
= {(x² + 1)² - 4x²} / (x² + 1)²
= (x² - 1)² / (x² + 1)²
= {(x² - 1) / (x² + 1)}²
Then, sinθ = (x² - 1) / (x² + 1)
Now, tanθ = sinθ / cosθ
= {(x² - 1) / (x² + 1)} / {2x / (x² + 1)}
= (x² - 1)/(2x)
Hence, proved.
If secθ - tanθ = x, then find sinθ, cosθ and tanθ.
Formula :
• sec²θ - tan²θ = 1
• a² - b² = (a + b) (a - b)
• sin²θ + cos²θ = 1
• (a + b)² - 4ab = (a - b)²
Solution :
Given that, secθ - tanθ = x ...(i)
We know that, sec²θ - tan²θ = 1
or, (secθ + tanθ) (secθ - tanθ) = 1
or, (secθ + tanθ) * x = 1
or, secθ + tanθ = 1/x ...(ii)
Now, (i) + (ii) gives
2 secθ = x + 1/x
or, secθ = (x² + 1)/(2x)
or, cosθ = 2x/(x² + 1)
Then, sin²θ = 1 - cos²θ
= 1 - {2x/(x² + 1)}²
= {(x² + 1)² - 4x²} / (x² + 1)²
= (x² - 1)² / (x² + 1)²
= {(x² - 1) / (x² + 1)}²
Then, sinθ = (x² - 1) / (x² + 1)
Now, tanθ = sinθ / cosθ
= {(x² - 1) / (x² + 1)} / {2x / (x² + 1)}
= (x² - 1)/(2x)
Hence, proved.
UltimateMasTerMind:
Great Answer! :)
Answered by
2
Hope it helps
Thanks for asking
Attachments:
Similar questions