English, asked by Nikita3238, 11 months ago

sec thita +tan titha = 3/2 value of cos titha ?

Answers

Answered by LovelyG
4

Answer:

\large{\underline{\boxed{\sf \cos \theta = \dfrac{12}{13}}}}

Explanation:

Given that ;

 \sec \theta +  \tan \theta =  \dfrac{3}{2}  \:  \:  \: .....(i)

We know that,

 \sec^{2}  \theta  -   { \tan}^{2} \theta = 1

Also,

  • a² - b² = (a + b)(a - b)

 { \sec}^{2}\theta -  { \tan}^{2} \theta = 1 \\  \\ \rightarrow ( \sec \theta +  \tan \theta) ( \sec \theta  - \tan \theta) = 1 \\  \\ \rightarrow  \frac{3}{2}  \times ( \sec \theta  -   \tan \theta) = 1 \\  \\ \rightarrow ( \sec \theta  -   \tan \theta) =  \frac{2}{3} \:  \:   \: .....(ii)

On adding equation (i) and (ii),

 \sec \theta +  \tan \theta +  \sec \theta -  \tan \theta = \frac{3}{2}  +  \frac{2}{3}  \\  \\ 2 \sec \theta =  \frac{9 + 4}{6}  \\  \\  \sec \theta =  \frac{13}{6}  \times  \frac{1}{2}  \\  \\ \sec \theta =  \frac{13}{12}

\rule{300}{2}

We know that,

Sec \theta = \rm{\dfrac{Hypotenuse}{Base}}

We get,

  • Hypotenuse = 13
  • Base = 12

We need to find, perpendicular -

 \rm perpendicular  =  \sqrt{h {}^{2}  - b {}^{2} }  \\  \\ \implies \rm p =  \sqrt{(13) {}^{2}  - (12) {}^{2} }  \\  \\ \implies \rm p =  \sqrt{169 - 144}  \\  \\ \implies \rm p =  \sqrt{25}  \\  \\ \implies \rm p = 5

Thus, the perpendicular is 5.

 \cos \theta = \rm \frac{base}{hypotenuse}  \\  \\ \implies \cos \theta  =  \frac{12}{13}

Hence, the answer is 12/13.

Similar questions