Math, asked by aditya2020222003, 11 months ago

sec x (1- sin x) (sec x + tan x) =1

prove..
class 11​


sivaprasath: (1 - sin x
sivaprasath: (1 - sin x)/cos x X (1 + sin x)/cos x = (1 - sin^2x) / cos^2 x = cos^2 x / cos^2x =1

Answers

Answered by sivaprasath
2

Answer:

Step-by-step explanation:

Given :

To prove :

sec x (1- sin x) (sec x + tan x) =1

Solution :

We know that,

a^2 - b^2 = (a+b)(a-b)  ...(i)

sec x = \frac{1}{cosx},

tan x = \frac{sinx}{cosx},

sin^2x+cos^2x=1

cos^2x = 1-sin^2x

Hence,

LHS = sec x (1- sin x) (sec x + tan x)

\frac{1}{cosx} (1-sinx)(\frac{1}{cosx} + \frac{sinx}{cosx})

(\frac{1-sinx}{cosx}) \times (\frac{1+sinx}{cosx} )

\frac{1-sin^2x}{cos^2x}  By (i) [here, a = 1 , b = sin x]

\frac{cos^2x}{cos^2x} = 1 = RHS

Hence, proved.

Similar questions