sec² = 1 + tan² Q , sec ² = 1_ ( 7/24)²
Answers
Answer:
Solution :
1) To prove : “ sin² θ + 1 / (1+ tan² θ ) = 1 ”
2) Inference ( Understanding the question, Thinking of the method ) : We shall start from Left hand side ( L. H. S) and proceed till we get R. H. S. We will use trigonometric identities too.
3) Formulas we are going to use :
arrowarrow 1/secθ = cosθ
arrowarrow tan²θ +1 = sec²θ
arrowarrow sin²θ + cos²θ = 1
4) Actual proof :
Firstly, We know that, tan²θ +1 = sec²θ
\begin{gathered}\\ \implies Left \: hand \: side \: \\ \implies sin^2 \theta + \frac {1}{1 + tan^2 \theta} \\ \implies (sin^2 \theta) + \frac{1}{sec^2 \theta} \\ \implies ( sin^2 \theta) + (cos^2 \theta) \\ \implies 1 \\ \implies Right \: Hand \: side\end{gathered}
⟹Lefthandside
⟹sin
2
θ+
1+tan
2
θ
1
⟹(sin
2
θ)+
sec
2
θ
1
⟹(sin
2
θ)+(cos
2
θ)
⟹1
⟹RightHandside
Therefore, We proved the identity sin² θ + 1 / (1+ tan² θ ) = 1
Hope it helps!