Math, asked by shona921, 1 year ago

Sec2 60-tan2 60 / sin 2
30+cos230

Answers

Answered by Abhishekkeshri02
14

Answer

Hope this helps you!!

Attachments:
Answered by pinquancaro
24

\frac{\sec^2 60-\tan^2 60}{\sin^2 30+\cos^2 30}=1

Step-by-step explanation:

Given : Expression \frac{\sec^2 60-\tan^2 60}{\sin^2 30+\cos^2 30}

To find : Solve the expression ?

Solution :

Expression \frac{\sec^2 60-\tan^2 60}{\sin^2 30+\cos^2 30}

Using trigonometric values,

\sin 30=\frac{1}{2}

\cos 30=\frac{\sqrt3}{2}

\sec 60=2

\tan 60=\sqrt3

Substitute the values,

=\frac{(2)^2-(\sqrt3)^2}{(\frac{1}{2})^2+(\frac{\sqrt3}{2})^2}

=\frac{4-3}{\frac{1}{4}+\frac{3}{4}}

=\frac{1}{\frac{4}{4}}

=\frac{1}{1}

=1

Therefore, \frac{\sec^2 60-\tan^2 60}{\sin^2 30+\cos^2 30}=1

#Learn more

Tan(45+A)×tan(45-A)​

https://brainly.in/question/14069123

Similar questions