Math, asked by VEDANTFEMINASHAH, 4 months ago

Sec2 A . cosec2 A = tan2 A + cot2 A + 2 prove ​

Answers

Answered by InfiniteSoul
4

\sf{\bold{\green{\underline{\underline{Solution}}}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ Sec^2A.cosec^2A = tan^2 A +  cot^2A + 2 }}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{TanA = \dfrac{SinA}{CosA}}}}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{CotA = \dfrac{CosA}{SinA}}}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ Sec^2A.cosec^2A = \dfrac{Sin^2A}{Cos^2A} + \dfrac{Cos^2A}{Sin^2A} + 2 }}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ Sec^2A.cosec^2A = \dfrac{ (Sin^2A)^2 + ( Cos^2A)^2 + 2 Sin^2A Cos^2A }{ Sin^2A Cos^2 A}}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{a^2+ b^2+ 2ab = ( a + b ) ^2 }}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ Sec^2A.cosec^2A = \dfrac{ ( sin^2A + Cos^2A) ^2}{ Sin^2A Cos^2A} }}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{Sin^2A + Cos^2A = 1 }}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ Sec^2A.cosec^2A = \dfrac{1^2}{ Sin^2A. Cos^2 A}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ Sec^2A.cosec^2A = \dfrac{1}{Sin^2A} . \dfrac{1}{Cos^2A} }}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{Cosec A = \dfrac{1 }{SinA}}}}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{sec A = \dfrac{1 }{CosA}}}}}

⠀⠀⠀

\sf : \implies\:{\bold{ Sec^2A.cosec^2A = sec^2A.cosec^2A}}

⠀⠀⠀⠀

LHS = RHS

⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀..... Hence Proved

Answered by ravibharathi22
4

Answer:

See the attachment.

Step-by-step explanation:

Attachments:
Similar questions