Math, asked by ruhi2004, 1 year ago

sec2 A . cosec2 A = tan2 A + cot2 A + 2 prove ​


Anonymous: ___k off

Answers

Answered by skh2
7
Question :-

 sec^{2}A \times cosec^{2}A = tan^{2}A+cot^{2}A + 2

 \rule{200}{2}

Answer :-

We know that :-

 { \sec}^{2} \theta = 1 + { \tan}^{2} \theta

 \rule{200}{2}

 { \cosec}^{2} \theta = 1 + { \cot}^{2} \theta

 \rule{200}{2}

 \tan \theta \times \cot \theta = 1

 \rule{200}{2}

Now, we have :-

 sec^{2}A \times cosec^{2}A = (1+tan^{2}A)(1+cot^{2}A)\\ \\ \\sec^{2}A \times cosec^{2}A =1 + cot^{2}A + tan^{2}A \\ + tan^{2}A.cot^{2}A\\ \\ \\sec^{2}A \times cosec^{2}A =2+cot^{2}A + tan^{2}A(RHS)

 \rule{200}{2}

LHS = RHS

 \boxed{\mathbb{\blue{HENCE\:PROVED}}}

 \rule{200}{2}
Answered by pratyush4211
5

Given

 \sec {}^{2}  \theta \times cosec {}^{2} \theta =  { \tan}^{2} \theta +  { \cot }^{2} \theta + 2 \\  \\

Taking

LHS

 {sec}^{2} \theta \times  {cosec}^{2} \theta \\  \\  {sec}^{2} \theta -  {tan}^{2} \theta = 1 \\  \\ sec {}^{2} \theta = 1 + tan {}^{2} \theta \\  \\  {cosec}^{2} \theta -  {cot}^{2} \theta = 1 \\  \\ cosec {}^{2} \theta = 1 +  {cot}^{2} \theta \\  \\

Now LHS can Written as

(1 +  {tan}^{2} \theta)(1 +  {cot}^{2} \theta) \\  \\ 1(1 + cot {}^{2} \theta) +  {tan}^{2} \theta(1 +  {cot}^{2} \theta) \\  \\ 1 +  {cot}^{2} \theta +  {tan}^{2} \theta + (tan {}^{2} \theta \times  {cot}^{2} \theta) \\  \\

Now we know

 {cot} \theta =  \frac{1}{ {tan} \theta}  \\  \\  cot \theta \times tan \theta = 1

Now

1 +  {cot}^{2} \theta +  {tan}^{2} \theta + (tan {}^{2} \theta \times  {cot}^{2} \theta) \\  \\  = 1 +  {cot}^{2}  \theta + tan {}^{2} \theta + (tan \theta \times cot\theta) {}^{2}  \\  \\ 1 + cot {}^{2} \theta +  {tan}^{2} \theta + (1) {}^{2}  \\  \\ 1 +  {cot}^{2} \theta + tan {}^{2} \theta + 1 \\  \\  {tan}^{2} \theta +  {cot}^{2} \theta + 2 \\  \\ lhs =  {tan}^{2} \theta +  {cos}^{2} \theta + 2

Hence It's Proved

LHS=RHS

Similar questions