√sec²Ф+cosec²Ф = tanФ+cotФ
it is fully sq root of LHS.
Answers
Answered by
1
LHS;
=> √1/cos²Ф +1/sin²Ф
=> √(sin²Ф+cos²Ф)/(sin²Фcos²Ф)
=> √1/(sin²Фcos²Ф)
=> 1/sinФcosФ
RHS;
=> tanФ+cotФ
=> sinФ/cosФ+cosФ/sinФ
=> (sin²Ф+cos²Ф)/sinФcosФ
=> 1/sinФcosФ
Thus LHS=RHS,
Hence Proved...
=> √1/cos²Ф +1/sin²Ф
=> √(sin²Ф+cos²Ф)/(sin²Фcos²Ф)
=> √1/(sin²Фcos²Ф)
=> 1/sinФcosФ
RHS;
=> tanФ+cotФ
=> sinФ/cosФ+cosФ/sinФ
=> (sin²Ф+cos²Ф)/sinФcosФ
=> 1/sinФcosФ
Thus LHS=RHS,
Hence Proved...
deeenbe:
Tell step by ste[!
Answered by
1
sec^2Φ=1/cos^2Φ
cosec^2Φ=1/sin^2Φ
adding these two we get sin^2Φ +cos^2Φ/sin^2Φ cos^2Φ
therefore the answer is 1/sinΦcosΦ
on the otherhand RHS is tanΦ+cotΦ=sinΦ/cosΦ+cosΦ/sinΦ=1/sinΦcosΦ
cosec^2Φ=1/sin^2Φ
adding these two we get sin^2Φ +cos^2Φ/sin^2Φ cos^2Φ
therefore the answer is 1/sinΦcosΦ
on the otherhand RHS is tanΦ+cotΦ=sinΦ/cosΦ+cosΦ/sinΦ=1/sinΦcosΦ
Similar questions