(sec²θ+cot²θ-Tan²θ) is equal to
Answers
Answer:
1
Step-by-step explanation:
MARK AS BRAINLIEST AND FOLLOW ME
Answer:
Answer:
1
Step-by-step explanation:
Given : {\sf{\ \ {\dfrac{tan^2 \theta - sec^2 \theta}{cot^2 \theta - cosec^2 \theta}}}}
cot
2
θ−cosec
2
θ
tan
2
θ−sec
2
θ
____________________________
• {\boxed{\sf{\gray{1 + tan^2 \theta = sec^2 \theta}}}}
1+tan
2
θ=sec
2
θ
{\sf{\gray{From \ this, \ we \ get \ [ tan^2 \theta - sec^2 \theta = - 1]}}}From this, we get [tan
2
θ−sec
2
θ=−1]
____________________________
• {\boxed{\sf{\gray{1 + cot^2 \theta = cosec^2 \theta}}}}
1+cot
2
θ=cosec
2
θ
{\sf{\gray{From \ this, \ we \ get \ [ cot^2 \theta - cosec^2 \theta = - 1]}}}From this, we get [cot
2
θ−cosec
2
θ=−1]
____________________________
Putting known values, we get
____________________________
\Rightarrow{\sf{ {\dfrac{- 1}{- 1}} }}⇒
−1
−1
____________________________
\Rightarrow{\boxed{\sf{\red{1}}}}⇒
1
____________________________
Other identities which are frequently used :
• sin²θ + cos²θ = 1
• sin θ = P/H = 1/cosec θ
• cos θ = B/H = 1/sec θ
• tan θ = P/B = 1/cot θ
Step-by-step explanation:
Please mark me as brainiest