[sec²θ-tan²θ+0] [sin²θ-cos²θ-1]
[cot²θ-cosec²θ+1]. [0-1+0]
Answers
Answered by
0
Step-by-step explanation:
Ans:
sin2θ + cos2θ = 1
sec2θ = 1 + tan2θ
cosec2θ = 1 + cot2θ
Using these identities we can simplify the given equation as
sin²θ + cos²θ + sec²θ + cosec²θ + tan²θ + cot²θ
= (sin²θ + cos²θ) + (sec²θ + tan²θ) + (cosec²θ + cot²θ)
= 1 + 1 + 2tan²θ + 1 + 2cot²θ
= 3 + 2(tan²θ + cot²θ)
Now, using AM-GM inequality we can say
min(tan²θ + cot²θ) = 2
So, min(3 + 2(tan²θ + cot²θ)) = 3 + 2*2 = 7
Similar questions