Math, asked by koduripushpanjali, 2 months ago

sec2 tetha -tan 2 theta =1 prove it​

Answers

Answered by anilpingal1411
0

Answer:

Taking LHS=sec

2

θ+cosec

2

θ

=

cos

2

θ

1

+

sin

2

θ

1

[∵cosθ=

secθ

1

];[sinθ=

cosecθ

1

]

=

cos

2

θsin

2

θ

sin

2

θ+cos

2

θ

[∵cos

2

θ+sin

2

θ=1]

=

cos

2

θsin

2

θ

1

=sec

2

θ.cosec

2

θ=RHS[∵cosθ=

secθ

1

];[sinθ=

cosecθ

Answered by MrSovereign
3

\Large{\underline{\underline{\bold{✯Required\;To\;Prove:}}}}

  • \sf{sec²\theta-tan²\theta = 1}

\Large{\underline{\underline{\blue{\bold{➸Proof:}}}}}

→\;{\sf{sec²\theta-tan²\theta}}

→\;\Large{\sf{\frac{1}{cos²\theta}-\frac{sin²\theta}{cos²\theta}}}

→\;\Large{\sf{\frac{1-sin²\theta}{cos²\theta}}}

  • \boxed{\pink{\sf{sin²\theta-cos²\theta = 1}}}
  • \boxed{\pink{\sf{cos²\theta = 1-sin²\theta}}}

→\;\Large{\sf{\cancel{\frac{cos²\theta}{cos²\theta}}}}

→\;{\bold{1}}

Hence, Proved

  • \Large{\red{\bold{sec²\theta-tan²\theta = 1}}}

\Large{\tt{@Mr Sovereign}}

Hope This Helps!!

Similar questions