Math, asked by aaryanapatadiya, 6 months ago

√sec² theta + cosec² theta = tan theta + cot theta​

Answers

Answered by thebrainlykapil
126

Answer:

\sf\green{We\: use\:  the \: following \: trigonometric\:  identities: }

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\: \sec^{2} θ \:  =  \:  \tan^{2} θ \:  +  \: 1}} }\\ \\\end{gathered}\end{gathered}

⠀⠀⠀⠀⠀ AND

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\:  \cosec ^{2}  θ \:  =  \:  \cot^{2}θ \:  +   \: 1}} }\\ \\\end{gathered}\end{gathered}

\sf\green{On \: adding \: these, \: we \: get }

\begin{gathered}\begin{gathered}\\ : \implies \displaystyle \sf \:  \sec^{2} θ \:  +  \:  \cosec^{2} θ \:  =  \:  \tan^{2}θ \:  +  \cot^{2} θ \:  +  \: 2\\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies \displaystyle \sf \:  \sec^{2} θ \:  +  \:  \cosec^{2} θ \:  =  \:  \tan^{2}θ \:  +  \cot^{2} θ \:  + \\  \  \: 2 \tanθ \:  \cotθ \:  = ( \tanθ \:  +  \:  \cotθ)^{2} \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\: \sqrt{ \sec^{2} θ}  \:  +  \:  \cosec^{2} θ \:  =  \:  \tan^{2}θ \:  +  \cot^{2} θ \:   }} }\\ \\\end{gathered}\end{gathered}

\huge\color{red}{Hence,\:Proved}

━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
106

Answer:

Mark thebrainlykapil's answer as branliest plzz dear frnd

Step-by-step explanation:

Similar questions