Math, asked by padigarbhavani, 4 months ago

Sec² theta - (Sin² theta - 2Sin⁴ theta / 2Cos⁴ theta - Cos² theta) = 1. Please prove this...​

Attachments:

Answers

Answered by sshreeganesh22
1

Answer:

hi bro

Step-by-step explanation:

this is your answer and please mark me brainliest

Attachments:
Answered by senboni123456
2

Step-by-step explanation:

We have,

 \sec^{2} ( \theta)  -  \frac{ \sin ^{2} (\theta)  - 2 \sin^{4} (\theta) }{2 \cos^{4} (\theta) -  \cos ^{2} ( \theta)  }  \\

 =  \sec^{2} (\theta)  -  \frac{ \sin^{2} (\theta)(1 - 2 \sin^{2} (\theta) ) }{ \cos^{2} (\theta)(2 \cos^{2} (\theta) - 1)  }  \\

 =  \sec^{2} (\theta)  -  \frac{ \sin^{2} (\theta)(1 - 2(1 -  \cos^{2} (\theta) )) }{ \cos^{2} (\theta)(2 \cos^{2} (\theta) - 1)  }  \\

 =  \sec^{2} (\theta)  -  \frac{ \sin^{2} (\theta)(2 \cos^{2} (\theta)  - 1) }{ \cos^{2} (\theta)(2 \cos^{2} (\theta) - 1)  }  \\

 =  \sec^{2} ( \theta)  -  \tan^{2} (\theta)

 = 1

Similar questions