sec²A=2+2tanA Then find tanA = ??????
Answers
Answered by
2
sec² A = 2 + 2 tan A
1 + tan² A = 2 + 2 tan A
tan² A - 2 tan A + 1 - 2 = 0
tan² A - 2 tan A - 1 = 0
By using abc formula:
a = 1
b = -2
c = -1
x1,2
= [-b ± √(b² - 4ac)]/2a
= [-(-2) ± √{(-2)² - 4 . 1 . (-1)}]/(2 . 1)
= [2 ± √(4 + 4)]/2
= (2 ± √8)/2
= (2 ± 2√2)/2
= 1 ± √2
x1 = 1 + √2
x2 = 1 - √2
1 + tan² A = 2 + 2 tan A
tan² A - 2 tan A + 1 - 2 = 0
tan² A - 2 tan A - 1 = 0
By using abc formula:
a = 1
b = -2
c = -1
x1,2
= [-b ± √(b² - 4ac)]/2a
= [-(-2) ± √{(-2)² - 4 . 1 . (-1)}]/(2 . 1)
= [2 ± √(4 + 4)]/2
= (2 ± √8)/2
= (2 ± 2√2)/2
= 1 ± √2
x1 = 1 + √2
x2 = 1 - √2
vangaal:
I need the value
Answered by
4
Hey there !!!!!!!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
sec²A=2+2tanA -------Equation 1
We know that sec²A-tan²A=1
sec²A=1+tan²A
Substituting sec²A=1+tan²A in Equation 1
1+tan²A=2+2tanA
tan²A-2tanA+1-2=0
tan²A-2tanA-1=0---Equation 2
Equation 2 is of the form ax²+bx+c=0
where x=-b+√(b²-4ac)/2a or -b-√(b²-4ac)/2a
Comparing tan²A-2tanA-1=0 with ax²+bx+c=0
a=1 b=-2 c=-1 and x=tanA
So,
tanA=-b+√b²-4ac/2a or -b-√b²-4ac/2a
tanA= (2+√(2²-(-1*4)))/2 or (2-√(2²-(-1*4)))/2
tanA=(2+√4+4 )/2 or (2-√4+4 )/2
tanA=(2+√8)/2 or (2-√8)/2
tanA=2+2√2/2 or 2-2√2/2
tanA=1+√2 or 1-√2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hope this helped you...............
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
sec²A=2+2tanA -------Equation 1
We know that sec²A-tan²A=1
sec²A=1+tan²A
Substituting sec²A=1+tan²A in Equation 1
1+tan²A=2+2tanA
tan²A-2tanA+1-2=0
tan²A-2tanA-1=0---Equation 2
Equation 2 is of the form ax²+bx+c=0
where x=-b+√(b²-4ac)/2a or -b-√(b²-4ac)/2a
Comparing tan²A-2tanA-1=0 with ax²+bx+c=0
a=1 b=-2 c=-1 and x=tanA
So,
tanA=-b+√b²-4ac/2a or -b-√b²-4ac/2a
tanA= (2+√(2²-(-1*4)))/2 or (2-√(2²-(-1*4)))/2
tanA=(2+√4+4 )/2 or (2-√4+4 )/2
tanA=(2+√8)/2 or (2-√8)/2
tanA=2+2√2/2 or 2-2√2/2
tanA=1+√2 or 1-√2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hope this helped you...............
Similar questions