Math, asked by siddhipurohit637, 1 month ago

Sec²theta - Sin²theta/ tan²theta = 1 +cot²theta - cos²theta​

Answers

Answered by MrImpeccable
69

ANSWER:

To Prove:

  • (sec²θ - sin²θ)/(tan²θ) = 1 + cot²θ - cos²θ

Proof:

We are given that,

\implies \dfrac{\sec^2\theta-\sin^2\theta}{\tan^2\theta}=1+\cot^2\theta-\cos^2\theta

Taking LHS,

\implies \dfrac{\sec^2\theta-\sin^2\theta}{\tan^2\theta}

We know that,

\hookrightarrow\sec^2\phi=\dfrac{1}{\cos^2\phi}

So,

\implies \dfrac{\sec^2\theta-\sin^2\theta}{\tan^2\theta}

\implies \dfrac{\dfrac{1}{\cos^2\theta}-\sin^2\theta}{\tan^2\theta}

Taking LCM,

\implies \dfrac{\dfrac{1-\sin^2\theta\cos^2\theta}{\cos^2\theta}}{\tan^2\theta}

We know that,

\hookrightarrow\tan^2\phi=\dfrac{\sin^2\phi}{\cos^2\phi}

So,

\implies \dfrac{\dfrac{1-\sin^2\theta\cos^2\theta}{\cos^2\theta}}{\dfrac{\sin^2\theta}{\cos^2\theta}}

Cancelling cos²θ,

\implies \dfrac{1-\sin^2\theta\cos^2\theta}{\sin^2\theta}

Separating the terms,

\implies \dfrac{1-\sin^2\theta\cos^2\theta}{\sin^2\theta}

\implies \dfrac{1}{\sin^2\theta}-\dfrac{\sin^2\theta\cos^2\theta}{\sin^2\theta}

We know that,

\hookrightarrow \dfrac{1}{\sin^2\phi}=\csc^2\phi

So,

\implies \dfrac{1}{\sin^2\theta}-\dfrac{\sin^2\theta\cos^2\theta}{\sin^2\theta}

\implies \csc^2\theta-\dfrac{\sin^2\theta\cos^2\theta}{\sin^2\theta}

Cancelling sin²θ,

\implies \csc^2\theta-\cos^2\theta

We know that,

\hookrightarrow\csc^2\phi=1+\cot^2\phi

So,

\implies \csc^2\theta-\cos^2\theta

\implies 1+\cot^2\theta-\cos^2\theta

\implies\bf \dfrac{sec^2\theta-sin^2\theta}{tan^2\theta}=1+cot^2\theta-cos^2\theta

As, LHS = RHS,

HENCE PROVED!!

Answered by NITESH761
1

Answer:

we have,

\tt \dfrac{sec^2 \:  \theta -sin^2  \: \theta}{tan^2  \: \theta}

\tt \implies \dfrac{\dfrac{1}{cos^2\: \theta} \:   -sin^2  \: \theta}{tan^2  \: \theta}

\tt \implies \dfrac{\dfrac{1- sin^2 \: \theta cos^2 \: \theta}{cos^2\: \theta}   }{tan^2  \: \theta}

\tt \implies \dfrac{\dfrac{1- sin^2 \: \theta cos^2 \: \theta}{cos^2\: \theta}   }{\dfrac{sin^2  \: \theta}{cos^2 \: \theta}}

\tt \implies \dfrac{\dfrac{1- sin^2 \: \theta cos^2 \: \theta}{\cancel{cos^2\: \theta}}}{\dfrac{sin^2  \: \theta}{\cancel{cos^2 \: \theta}}}

\tt \implies \dfrac{1-sin^2 \: \theta cos^2 \: \theta}{sin^2 \: \theta}

\tt \implies \dfrac{1}{sin^2 \: \theta} - \dfrac{sin^2 \: \theta cos^2 \: \theta}{sin^2 \: \theta}

\tt \implies cosec^2 \: \theta - \dfrac{\cancel{sin^2 \: \theta} cos^2 \: \theta}{\cancel{sin^2 \: \theta}}

\tt \implies cosec^2 \: \theta - cos^2 \: \theta

\tt \implies 1+ cot^2 \: \theta - cos^2 \: \theta

Similar questions