Math, asked by jk5678077, 7 months ago

√sec²thita+cosec²thita=tan thita +cot thita​

Answers

Answered by monisha2k618
0

Answer:

We use the following trigonometric identities:

sec

2

θ=tan

2

θ+1 and

cosec

2

θ=cot

2

θ+1

On adding these, we get:

sec

2

θ+cosec

2

θ=tan

2

θ+cot

2

θ+2

⇒sec

2

θ+cosec

2

θ=tan

2

θ+cot

2

θ+2tanθcotθ=(tanθ+cotθ)

2

sec

2

θ+cosec

2

θ

=tanθ+cotθ

Hence Proved.

Answered by Hareganesh
0

Step-by-step explanation:

= √sec^2thita + cosec^2thita =

tan thita + cot thita

Squaring both LHS and RHS

= sec^2thita + cosec^2thita =

(tan thita + cot thita)^2

= sec^2thita + cosec^2thita =

tan^2thita + cot^2thita + 2(tan thita)(cotthita)

= sec^2thita + cot^2thita - tan^2thita - cot^2thita = 2(tan thita)(cot thita)

= (sec^2thita - tan^2thita) +

(cosec^2thita - cot^2thita) = 2(1)

= (1) + (1) = 2(1)

Hence proved

Similar questions