Math, asked by BrainlyHelper, 1 year ago

sec⁴ A − sec² A is equal to
(a)tan² A − tan⁴ A
(b)tan⁴ A − tan² A
(c)tan⁴ A + tan² A
(d)tan² A + tan⁴ A

Answers

Answered by Anonymous
109

Answer:

sec⁴ A − sec² A is equal to tan² A + tan⁴ A

Option d. is correct .

Step-by-step explanation:

Given :

sec⁴ A − sec² A

Taking sec² A  common

⇒  sec² A  (  sec² A  - 1 )  ... ( i )

We have Identity :

⇒  sec² A -  tan² A = 1

Rewrite it as

⇒  sec² A - 1 = tan² A ... ( ii )

⇒ sec² A = 1  +  tan² A ... ( iii )

Now from ( i )  and  ( ii ) we have

sec² A ( tan² A )

Putting sec² A values from ( iii )  we get

⇒ 1  +  tan² A (  tan² A )

tan² A + tan⁴ A

Thus we get answer .


Anonymous: Nice bro!
Answered by InnocentBOy143
9

\boxed{\bold{\mathsf{SOLUTION }}}

  {sec}^{4} A -  {sec}^{2} A \\  =  >  {sec}^{2} A[ {sec}^{2} A - 1] \:  \:  \: \: (taking \: sec {}^{2} A \: as \: \: common)  \\  =  >  {sec}^{2} A \:  \times  {tan}^{2} A \:  \:  \:  \:

Let we assume tan^4 A + tan^2A ,we get

 =  >  {tan}^{4} A+  {tan}^{2} A\\  =  >  {tan}^{2} A[tan { }^{2} A +1]\\  =  >  {tan}^{4}A  +  {tan}^{2} A

Hope it helps

Similar questions