Math, asked by pk0435666, 4 months ago

sec4 A-sec2 A=tan2 A+tan4A provide​

Answers

Answered by adityabhardwaj291020
5

Step-by-step explanation:

LHS : sec⁴A - sec²A

=> sec²A(sec²A - 1)

=> (tan²A +1)(tan²A). [ tan²A + 1 = sec²A ]

=> tan⁴A + tan²A

RHS : tan⁴A + tan²A

=> LHS = RHS

HENCE PROVED

Answered by ShírIey
13

Appropriate Question:

  • Prove that \sf sec^4 \; A - sec^2 \; A = tan^2\; A + tan^4 \; A

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

⠀⠀⠀⠀⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{Taking\; LHS: :}}⠀⠀⠀

:\implies\sf \sf sec^4 \; A - sec^2 \\\\\\:\implies\sf sec^2 A \Big(sec^2 A - 1 \Big)  \\\\\\:\implies\sf  \Big(1 + tan^2 \; A\Big)\; \Big(tan^2\; A \Big) \\\\\\:\implies\sf  tan^2 \; A + tan^4\:A  \\\\\\:\implies\bf\pink{tan^2 \; A + tan^4\:A = RHS}

⠀⠀⠀\therefore LHS = RHS; Hence Proved!

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

\bigstar\:\sf Trigonometric\:Values :\\\begin{tabular}{|c|c|c|c|c|c|}\cline{1-6}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta &  0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} &a $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}& $\dfrac{1}{\sqrt{2}}& $\dfrac{1}{2}& 0\\\cline{1-6}Tan \theta& 0& $\dfrac{1}{\sqrt{3}}& 1& \sqrt{3}& Not D$\hat{e}$fined \\\cline{1-6}\end{tabular}

Similar questions