Math, asked by mshubham2411, 11 hours ago

sec⁴ -tan ⁴ = 1 + 2 tan², prove the equation ​

Answers

Answered by senboni123456
5

Answer:

Step-by-step explanation:

We have,

\tt{sec^4(\theta)-tan^4(\theta)}

\tt{=\left\{sec^2(\theta)-tan^2(\theta)\right\}\left\{sec^2(\theta)+tan^2(\theta)\right\}}

\tt{=1\cdot\left\{1+tan^2(\theta)+tan^2(\theta)\right\}}

\tt{=1+2\,tan^2(\theta)}

Answered by mathdude500
7

Given Question

Prove that

\rm :\longmapsto\: {sec}^{4}x -  {tan}^{4}x = 1 + 2 {tan}^{2}x

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\: {sec}^{4}x -  {tan}^{4}x

can be rewritten as

\rm \:  =  \:  {( {sec}^{2}x) }^{2}  -  {( {tan}^{2} x)}^{2}

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {x}^{2} -  {y}^{2} = (x + y)(x - y) \: }}}

So, using this identity, we get

\rm \:  =  \: ( {sec}^{2}x -  {tan}^{2}x)( {sec}^{2}x +  {tan}^{2}x)

We know

 \purple{\rm :\longmapsto\:\boxed{\tt{  {sec}^{2}x -  {tan}^{2}x = 1}}} \\

So, using this identity, we get

\rm \:  =  \: 1 \times (1 +  {tan}^{2}x +  {tan}^{2}x)

\rm \:  =  \: 1 +  {2tan}^{2}x

Hence,

\rm\implies \:\boxed{\tt{  {sec}^{4}x -  {tan}^{4}x = 1 +  {2tan}^{2}x \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions